Records of carbon and sulfur cycling during the Silurian Ireviken Event in Gotland, Sweden

Catherine V. Rose a,*, Woodward W. Fischer b, Seth Finnegan c, David A. Fike d,*

a School of Earth & Environmental Sciences, University of St Andrews, Fife KY16 9AL, UK
b Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
c Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
d Department of Earth & Planetary Sciences, Washington University, St. Louis, MO 63130, USA

Received 4 September 2018; accepted in revised form 21 November 2018; Available online 26 November 2018

Abstract

Early Silurian (~431 Ma) carbonate rocks record a ca. 4.5‰ positive excursion in the stable isotopic composition of carbonate carbon (δ^{13}C$_{\text{carb}}$). Associated with this isotopic shift is a macroevolutionary turnover pulse known as the ‘Ireviken Event’. The onset of this carbon isotope excursion is commonly associated with a shallowing-upward facies transition that may have been accompanied by climatic change, as indicated by a parallel positive shift (~0.6‰) in the stable isotopic composition of carbonate oxygen (δ^{18}O$_{\text{carb}}$). However, the relationships among carbon cycle perturbations, faunal turnover, and environmental changes remain enigmatic. Here we present a suite of new isotopic data across the Ireviken Event from multiple sections in Gotland, Sweden. These samples preserve no systematic change in δ^{18}O$_{\text{carb}}$ but show positive excursions of equal magnitude in both carbonate (δ^{13}C$_{\text{carb}}$) and organic (δ^{13}C$_{\text{org}}$) carbon. In addition, the data reveal a synchronous perturbation in sulfur isotope ratios, manifest as a ca. 7‰ positive excursion in carbonate-associated sulfate (δ^{34}S$_{\text{CAS}}$) and a ca. 30‰ positive excursion in pyrite (δ^{34}S$_{\text{pyr}}$). The increase in δ^{34}S$_{\text{pyr}}$ values is accompanied by a substantial, concomitant increase in stratigraphic variability of δ^{34}S$_{\text{pyr}}$.

The relatively constant offset between the δ^{13}C$_{\text{carb}}$ and δ^{13}C$_{\text{org}}$ excursions throughout the Ireviken Event could be attributed to increased organic carbon burial, or possibly a change in the isotopic composition of CO$_2$ sources from weathering. However, a positive correlation between carbonate abundance and δ^{13}C$_{\text{carb}}$ suggests that local to regional changes in dissolved inorganic carbon (DIC) during the shallowing-upward sequence may have been at least partly responsible for the observed excursion. The positive excursion recorded in δ^{34}S$_{\text{CAS}}$ suggests a perturbation of sufficient magnitude and duration to have impacted the marine sulfate reservoir. An inverse correlation between CAS abundance and δ^{34}S$_{\text{CAS}}$ supports the notion of decreased sulfate concentrations, at least locally, consistent with a concomitant increase in pyrite burial. A decrease in the offset between δ^{34}S$_{\text{CAS}}$ and δ^{34}S$_{\text{pyr}}$ values during the Ireviken Event suggests a substantial reduction in the isotopic fractionations (e$_{\text{pyr}}$) expressed during microbial sulfur cycling and pyrite precipitation through this interval. Decreased e$_{\text{pyr}}$ and the concomitant increase in stratigraphic variation in δ^{34}S$_{\text{pyr}}$ are typical of isotope systematics observed in modern shallow-water environments, associated with increased closed-system behavior and/or oxidative sedimentary reworking during early sediment diagenesis. While the isotopic trends associated with the Ireviken Event have been observed in multiple locations around the globe, many sections display different magnitudes of isotopic change, and moreover, are typically associated with local facies changes. Due to the stratigraphic coherence of the carbon and sulfur isotopic and abundance records across the
Keywords: Carbonate-associated sulfate; Pyrite; Silurian; Sulfur isotopes

1. INTRODUCTION

The global carbon and sulfur biogeochemical cycles encompass a suite of fundamental interactions between the biosphere and Earth surface environments. Our understanding of the temporal evolution of biogeochemical cycling is primarily based on inferences drawn from the stable isotopic composition of carbon- and sulfur-bearing phases preserved in sedimentary strata (Garrels & Lerman, 1984; Holser et al., 1988; Hayes, 1993; Canfield, 2001a; Berner, 2006). The carbon-bearing phases are sedimentary carbonate and organic carbon, reflecting the oxidized and reduced sinks, respectively (Hayes et al., 1999; Saltzman & Thomas, 2012). Sulfate salts are the major oxidized sink for the sulfur cycle and are found in the form of sedimentary sulfate evaporite minerals (Holser, 1977; Canfield, 2001a; Kampschulte & Strauss, 2004), barite (Paytan et al., 2004), or carbonate-associated sulfate (CAS) - sulfate bound in the carbonate mineral lattice (Burdett et al., 1989). The reduced sulfur sink comes predominantly from pyrite, as well as organic sulfur (Werne et al., 2003; Werne & Lyons, 2005; Raven et al., 2016). These isotope proxies are sensitive to changing pathways and rates of microbial metabolic activity (Canfield, 2001a; Sim et al., 2011b; Hayes, 2001; Leavitt et al., 2013), as well as the burial flux of metabolic products, including organic matter and pyrite, in addition to the burial of carbonates and sulfate minerals (Garrels & Lerman, 1984; Kump & Garrels, 1986).

Perturbations to carbon and sulfur cycling occur throughout the geologic record and are typically observed as positive and negative excursions in δ^{13}C and/or δ^{34}S proxies. The Paleozoic sedimentary record includes multiple positive excursions in δ^{13}C$_{\text{carb}}$ (Saltzman & Thomas, 2012). These excursions are commonly attributed to transient increases in organic carbon burial (Saltzman, 2005; Gill et al., 2011; Sim et al., 2015), although changes in the isotopic composition of weathering products entering the ocean also have been invoked (Kump et al., 1999). Similarly, transient increases in δ^{34}S often have been attributed to increased pyrite burial (Gill et al., 2007; Gill et al., 2011; Sim et al., 2015), or less commonly to changes in marine inputs (Canfield, 2004; Fike & Grotzinger, 2008). Coupled measurements of carbon and sulfur cycling can provide additional constraints on forcing mechanisms as a result of their differential behavior in terms of magnitude and response time to a particular forcing (Fike et al., 2006; Gill et al., 2007; McFadden et al., 2008; Li et al., 2010; Gill et al., 2011; Jones & Fike, 2013; Sim et al., 2015).

The Late Ordovician Hirnantian Stage provides a well-studied example of the connections between biogeochemical cycling (parallel positive excursions ($\sim 4\%$) in δ^{13}C$_{\text{carb}}$ and δ^{13}C$_{\text{org}}$ (Young et al., 2010; Jones et al., 2011)), changing climate (glaciation and associated cooling (Finnegan et al., 2011)), and marine extinctions (Sheehan, 2001; Delabroye & Vecoli, 2010; Melchin et al., 2013). Associated with the Hirnantian δ^{13}C excursion, there is a well-documented, synchronous positive excursion in pyrite (δ^{34}S$_{\text{pyr}}$), although the magnitude ($\sim 20\%$) and pre-excursion values vary slightly between locations (Yan et al., 2009; Zhang et al., 2009; Gorjan et al., 2012; Hammarlund et al., 2012). Interestingly, however, there is no accompanying excursion in sulfate δ^{34}S$_{\text{CAS}}$ in the Hirnantian strata that have been studied (Jones & Fike, 2013; Gill et al., 2014; Present et al., 2015). This differential behavior of δ^{34}S$_{\text{CAS}}$ vs. δ^{34}S$_{\text{pyr}}$ records provides constraints on the nature of biogeochemical changes during the Hirnantian stage, suggesting that the positive excursion in δ^{34}S$_{\text{pyr}}$ results from a transient decrease in the isotopic fractionation (ϵ_{pyr}) expressed between sulfate and pyrite (Jones & Fike, 2013). A decrease in ϵ_{pyr} could reflect enhanced organic loading (or increased organic matter degradation to organic acids usable by sulfate reducers) driving faster rates of cell-specific sulfate reduction (Sim et al., 2011b; Leavitt et al., 2013) and/or enhanced closed-system behavior (Gomes & Hurtgen, 2015), such as might be driven by enhanced organic carbon loading or increased sedimentation rates (Claypool, 2004; Pasquier et al., 2017). Both processes may have occurred during the sea level lowstand during the Hirnantian glacial maximum (Finnegan et al., 2012), potentially as well as increased rates of sulfate oxidation (Fry et al., 1988). The hypothesis that these processes might together reflect the impact of sea level change on ϵ_{pyr} in local stratigraphic sections is supported by observations of the depth-dependence on δ^{34}S$_{\text{pyr}}$ values in modern sediments (Aller et al., 2010) and across recent glacial-interglacial transitions, where large (up to 75%) variations in δ^{34}S$_{\text{pyr}}$ appear to be predominantly driven by variable sedimentation rates during glacial and interglacial periods (Pasquier et al., 2017).

Here we examine the relationship between biogeochemical cycling, extinction, and sedimentology during the slightly younger Silurian (Sheinwoodian, ~ 431 Ma) Ireviken Event (Munnecke et al., 2003; Calner, 2008). This event is associated with the extinction of approximately 80% of conodont species and the extirpation of more than 50% of trilobite species in the Gotland record (Jeppsson, 1997a); there were also associated extinctions among acritarchs, chitinozoans, corals, brachiopods, and graptolites (Munnecke et al., 2003; Cooper et al., 2013). Faunal turnover has been suggested to occur in eight discrete steps (Jeppsson, 1997a), with the largest extinction pulse...
Table 1
Palaeogeography and locations of the early Silurian Ireviken Bioevent (IBE) and/or the Early Sheinwoodian Carbon Isotope Excursion (ESCIE).

<table>
<thead>
<tr>
<th>Location*</th>
<th>Facies</th>
<th>Data</th>
<th>Magnitude of δ¹³C excursion</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transgressive facies associated with δ¹³C excursion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee (TN)</td>
<td>Wackestone/packstone with transition to argillaceous interval marking onset of δ¹³C_carb excursion; also transition in conodonts.</td>
<td>δ¹³C_carb, δ¹⁸O_carb</td>
<td>δ¹³C_carb - increase from 2‰ to 4‰</td>
<td>Cramer and Saltzman (2005)</td>
</tr>
<tr>
<td>Iowa (IO)</td>
<td>Crinoidal wackestone/packstone with argillaceous unit marking onset of δ¹³C_carb excursion.</td>
<td>δ¹³C_carb, δ¹⁸O_carb</td>
<td>δ¹³C_carb - increase from 1 to 5‰</td>
<td>Cramer and Saltzman (2005)</td>
</tr>
<tr>
<td>Ohio (OH)</td>
<td>Wackestone/packstone with onset of δ¹³C_carb excursion associated with organic rich interval.</td>
<td>δ¹³C_carb, δ¹⁸O_carb</td>
<td>δ¹³C_carb - increase from 1 to 3‰</td>
<td>Cramer and Saltzman (2005)</td>
</tr>
<tr>
<td>Nevada (NE)</td>
<td>Bedded chert transitions to skeletal wackestone; end of amorphognathoide conodonts.</td>
<td>δ¹³C_carb</td>
<td>δ¹³C_carb - increase from 0 to 3‰</td>
<td>Saltzman (2001)</td>
</tr>
<tr>
<td>Oklahoma (OK)</td>
<td>Transition from skeletal wackestone to shale.</td>
<td>δ¹³C_carb</td>
<td>δ¹³C_carb - increase from –2 to 4‰</td>
<td>Saltzman (2001)</td>
</tr>
<tr>
<td>Tunisia (TU)</td>
<td>Broad transition from fine-grained, immature sandstones, siltstones to shaly to silty sediments with marly interbeds.</td>
<td>δ¹³C org</td>
<td>δ¹³C org - increase from –30 to –28‰</td>
<td>Vecoli et al. (2009)</td>
</tr>
<tr>
<td>Great Britain (GB)</td>
<td>Transition from bioturbated mudstone to laminated hemipelagite.</td>
<td>δ¹³C_carb, δ¹³C org</td>
<td>δ¹³C_carb - increase from –30 to –26‰</td>
<td>Jeppsson (1997b), Munnecke et al. (2003), Loydell and Fryda (2007), Hughes, Ray and Brett (2014), Hughes and Ray (2016)</td>
</tr>
<tr>
<td>Regressive facies associated with δ¹³C excursion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctic Canada (AC)</td>
<td>Transition from platy calcareous shale to interbedded with limestone beds; widespread eustatic low-stand.</td>
<td>δ¹³C_carb, δ¹³C org</td>
<td>δ¹³C_carb - increase from 1 to 3‰; δ¹³C_carb - increase from –29.5 to –27‰</td>
<td>Wenzel & Joachimski (1996), Noble et al. (2005)</td>
</tr>
<tr>
<td>Sweden (SW)</td>
<td>Micrite/wackestone/packstone with subaerial exposures in Hogklint Fm. Heavy δ¹³C_carb & δ¹⁸O_carb values recorded during sea-level lowstands.</td>
<td>δ¹³C_carb, δ¹⁸O_carb</td>
<td>δ¹³C_carb - increase from 1 to 4‰</td>
<td>Wenzel & Joachimski (1996)</td>
</tr>
<tr>
<td>East Baltic (EB)</td>
<td>Estonia – onset of δ¹³C_carb excursion associated with transition from shale to brown marl. Latvia – not onset but peak of δ¹³C_carb excursion coincides with transition from shale to marl.</td>
<td>δ¹³C_carb, δ¹⁸O_carb</td>
<td>δ¹³C_carb - increase from 0 to 4‰; δ¹³C_carb - increase from 0 to 3‰</td>
<td>Kaljo et al. (1997), Kaljo et al. (1998)</td>
</tr>
<tr>
<td>No facies variability associated with δ¹³C excursion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quebec (QU)</td>
<td>Reefal facies.</td>
<td></td>
<td></td>
<td>Azmy et al. (1998)</td>
</tr>
<tr>
<td>Podolia (PO)</td>
<td>Onset of δ¹³C_carb excursion associated with transition from marl to dolomite. Facies changes but not consistent.</td>
<td>δ¹³C_carb, δ¹⁸O_carb</td>
<td></td>
<td>Kaljo et al. (2007)</td>
</tr>
<tr>
<td>No detailed facies and/or isotope data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaska (AL)</td>
<td>—</td>
<td></td>
<td>Conodont morphology</td>
<td>Jeppsson (1997b)</td>
</tr>
<tr>
<td>North West Territories (NWT)</td>
<td>—</td>
<td></td>
<td>Conodont morphology</td>
<td>Jeppsson (1997b)</td>
</tr>
</tbody>
</table>
occurring at Datum 2, just at or immediately below the Sheinwoodian-Homerian boundary, and the second largest pulse occurring at Datum 4 (Jeppsson, 1997a; Munnecke et al., 2003). Previous reports identified a \sim4‰ positive excursion in carbonate isotopes ($\delta^{13}C_{\text{carb}}$) at the onset of Datum 4 that is coincident with a small (\sim0.6‰) increase in carbonate oxygen isotopes ($\delta^{18}O_{\text{carb}}$), which may be evidence of changing climate or local hydrology (Munnecke et al., 2003). A bentonite located at Datum 2 has been dated to 431.8 ± 0.7 Ma and the duration of the associated $\delta^{13}C_{\text{carb}}$ excursion has been estimated to be \sim1 Myr (from 431.5–430.5 Ma; Cramer et al., 2012). The $\delta^{13}C_{\text{carb}}$ excursion, biotic turnover, and facies change associated with the Ireviken Event has been observed in multiple sections around the globe (Table 1; Fig. 1). In many locations, the Ireviken Event is associated with local facies change, particularly in Baltica and Arctic Canada, where it is coincident with a sea level regression, and in central USA, Great Britain and Tunisia, where it appears to coincide with a transgression (Table 1). Here, we apply paired isotopic analysis of carbon ($\delta^{13}C_{\text{carb}}$, $\delta^{13}C_{\text{org}}$), oxygen ($\delta^{18}O_{\text{carb}}$), and sulfur (sulfate $\delta^{34}S_{\text{CAS}}$ and pyrite $\delta^{34}S_{\text{pyr}}$) phases in samples collected from stratigraphic sections across Silurian-aged strata of Gotland, Sweden, to improve our understanding of the changes in records of biogeochemical cycling during this event and their potential association with biological turnover and environmental change.

2. GEOLOGICAL SETTING

The stratigraphic section exposed on the island of Gotland, Sweden spans the latest Llandovery through the Wenlock stages of the Early Silurian epoch (Fig. 2). Formation ages and correlations between outcrops are well constrained by conodont and graptolite biostratigraphy (Jeppsson et al., 2006). The section records shelf, carbonate platform and backreef lagoon sediments deposited on the margin of the Baltic basin, which was situated within 30° of the equator during Early Silurian time (Fig. 1; Torsvik et al., 1992).

The oldest exposed strata on Gotland are the Lower Visby Beds, which consist of marls interbedded with fine-grained wavy-bedded to nodular argillaceous limestones and likely were deposited below storm-wave base (Fig. 3a; Calner et al., 2004b) (see SOM for petrographic descriptions and thin section images for all formations; Fig. S1). Fossils, primarily rhynchonelliform brachiopods and bryozoans, are common but not abundant (Samtleben et al., 1996; Calner et al., 2004a). The contact between Lower and Upper Visby beds is marked by a condensed bed containing abundant fossils of the solitary rugose coral Phaulactis that has been interpreted as a maximum flooding surface (Samtleben et al., 1996; Calner et al., 2004a) (see SOM for petrographic descriptions and thin section images for all formations; Fig. S1). Fossils, primarily rhynchonelliform brachiopods and bryozoans, are common but not abundant (Samtleben et al., 1996; Calner et al., 2004a). The contact between Lower and Upper Visby beds is marked by a condensed bed containing abundant fossils of the solitary rugose coral Phaulactis that has been interpreted as a maximum flooding surface (Samtleben et al., 1996; Jeppsson, 1997a; Munnecke et al., 2003; Calner et al., 2004b; Jeppsson et al., 2006). Conodont biostratigraphy places the Lower Visby–Upper Visby contact slightly above the Sheinwoodian-Homerian boundary (Jeppsson et al., 2006). Following Munnecke et al. (2003), we used the Phaulactis bed as the datum for correlating sections (Fig. 4). The Upper Visby records a shallowing-upwards cycle, where carbonate content progressively increases, associated with a decreased occurrence
of marl beds and the appearance of bioclastic limestones and reef mounds. Ripple marks indicate deposition above storm-wave base. Fossils are abundant in the Upper Visby Beds (Fig. 3b and c) (Samtleben et al., 1996; Calner et al., 2004a).

The overlying Höglklint Formation (Fm) consists of algal and crinoidal limestones with some reef mounds and was deposited above storm-wave base (Fig. 3d; Riding & Watts, 1991; Samtleben et al., 1996; Watts & Riding, 2000). The contact between the Höglklint Fm and the...
Fig. 3. Sedimentology of the Lower Visby Fm - Slite Group, Gotland. (a) Prograding nodular limestone and marl alternations of the Lower and Upper Visby Fms, near Högklint (Section G1). (b) Wavy-bedded to nodular argillaceous limestone interbedded with marls transition upward to packstone with brachiopods, bryozoans, crinoids, and stromatoporoids, Upper Visby Fm, near Högklint (G1). (c) A tabulate coral in the Upper Visby Fm, near Högklint (G1). (d) Grainstone within Högklint Fm, Galgberget (G5). (e) Stromatoporoid within the Tofta Fm, Galgberget (G5). (f) Coarse cross-beded intraclast grainstone with crinoids and brachiopods, Upper Slite Fm, Slite Harbor (G8). (g) Crinoidal grainstone with stylolites within the Upper Slite Fm, Slite Harbor (G8). (h) Intercalated wackestone and green marl with common rugose corals, brachiopods, and trilobites, Slite Fm, near Cementa quarry (G13).

Fig. 4. Composite data, color/symbol coded by section (δ¹³Ccarb, δ¹⁸Ocarb, δ¹³Corg, δ³⁴S₃O₄, δ³⁴Spyr). See Fig. 2 for section locations. Conodont data and zonation showing faunal turnover are from Cramer et al. (2010). The closed circles at the tops of ranges indicate last appearances, with the exception of *Ozarkodina paraconfluen*sa, which first appears at datum 4 before a disappearance at datum 6. *O. paraconfluen*sa does return at a higher stratigraphic level on Gotland, as indicated by the arrow above the closed circle at datum 6. Conodont abbreviations: Pt.—Pterospathodus; Ps— Pseudooneotodus; p.— pennatus; K—Kockelella; Pt. am. amorphognathoides amorphognathoides.
overlying Tofta Fm has been interpreted as a sequence boundary (Calner et al., 2004b). The Tofta Fm consists of oncocid-rich bedded limestones with abundant leperditi-copid ostracods and likely represents a shallow, restricted setting, such as a back-reef lagoon (Fig. 3e; Riding & Watts, 1991; Samtleben et al., 1996). Above the Tofta Fm, the Hangvar Fm consists of a distinct reef mound at the base of the unit with interbedded marls and limestones upsection, suggesting a transition to a deeper-water setting (Calner et al., 2004a).

The youngest strata we sampled were from the Slite Fm, which transitions from limestone to interbedded marly limestones and marls, reflecting deposition in deeper water (Fig. 3f–h). Strata are fossiliferous throughout this formation (Calner et al., 2004a; Cummins et al., 2014). Slite Group strata were sampled in section G13 (Cementa quarry) and are reported relative to an arbitrary datum at the base of the section due to an unknown thickness of unsampled strata above the top of the underlying sections.

The strata exposed on Gotland are exceptionally well preserved for their age. There has been very little tectonic deformation and strata are nearly horizontal (Jeppsson, 1983; Calner et al., 2004a). Thermal alteration is minimal with conodont alteration index (CAI) values of ~1 indicating a maximum temperature of ~100 °C (Jeppsson, 1983; Wenzel et al., 2000). Clumped isotope paleother-mometry (Eiler, 2007) on Gotland brachiopods and rugose corals gives low to moderate temperatures (30–60 °C; Cummins et al., 2014). The combination of clumped isotope data with classical water-rock paleothermometry indicates that diagenetic recrystallization primarily occurred as a closed-system (i.e., rock-buffered) process (Cummins et al., 2014).

The main extinction pulses of the Ireviken Event occur just before and at the boundary separating the Lower and Upper Visby beds (Jeppsson, 1997a; Munnecke et al., 2003). This Lower - Upper Visby contact also marks the onset of a +4‰ δ13C carb excursion and a +0.6‰ positive shift to increased δ18O carb values previously reported (Munnecke et al., 2003) and is associated with a trend toward shallower water depositional facies that lasts throughout the duration of the δ13C carb excursion (Calner et al., 2004a). The coincidence of the faunal turnover, biogeochemical perturbations, and changing depositional environment provide a framework to investigate the relationships between environmental, ecological, and depositional factors. Many workers have invoked a glacial cause for the Ireviken Event (Azmy et al., 1998; Kaljo et al., 2003; Brand et al., 2006; Calner, 2008) based on the similarity for the Ireviken Event (Azmy et al., 1998; Kaljo et al., 2003; Melchin et al., 2013; Zhou et al., 2015). Recent conodont phosphate δ18O analyses also support cooling (and/or expanded ice volume) during Ireviken time (Troetter et al., 2016). Widespread glacial tillites in Brazil are thought to be of latest Llandovery or earliest Wenlock age, supporting the idea that a cooling climate could be an integral part of the Ireviken Event (Grahn & Caputo, 1992).

3. METHODS

We collected a large suite of carbonate samples from outcrop in conjunction with measuring stratigraphic sections across Gotland (Fig. 2). Hand samples were slabbed with a rock saw to remove weathered surfaces. Material for carbonate carbon and oxygen isotopic analysis was obtained by drilling 100 mg of carbonate powder from samples in the field and from each slab back in the laboratory with a carbide dental drill, targeting well-preserved primary textures in predominantly fine-grained micrites. An additional portion (40–80 g) of each rock sample was crushed to a homogeneous powder in a Speck 8515 shatterbox with an alumina ceramic vessel for subsequent sulfate and sulfide extractions.

Approximately 30 g of powdered sample was used for each sulfate extraction, following a modified version of the procedure of Burdett et al. (1989). The powder was soaked in a 10% NaCl solution for 12 h and then rinsed three times in deionized water. Gradual addition of 6 N HCl dissolved the carbonate matrix and liberated carbonate-associated sulfate (CAS). Acid addition continued until no carbonate remained. The resulting solution was filtered from the insoluble residue via vacuum filtration in three steps, finishing with a 0.2 µm filter. Saturated barium chloride solution was added to the filtrate to precipitate barium sulfate, which was dissolved by centrifugation and rinsed with deionized water. The resulting barium sulfate was dried overnight at 70 °C.

Acid insoluble residue was rinsed with deionized water and dried at 70 °C, weighed, and then homogenized for subsequent extraction of pyrite sulfur using a method modified from Burton et al. (2008). Residue was placed in an airtight reaction flask. Air in the flask was flushed with N2 gas. An acidified chromium chloride solution was injected to the reaction vessel, allowing any pyrite in the residue to react to form hydrogen sulfide gas, which was carried by the N2 stream into the AgNO3 trap. The sulfide gas reacted with the silver nitrate solution to precipitate silver sulfide. The resulting silver sulfide was centrifuged, rinsed, and dried at 70 °C.

Carbonate carbon and oxygen isotope ratios were measured using ~100 µg of drilled carbonate powder that was reacted for 4 h at 72 °C with an excess of 100% H3PO4 in He-flushed, sealed tubes. Evolved CO2 was sampled with a Thermo Finnigan Gas Bench II, and isotopic ratios were measured with a Thermo Finnigan Delta V Advantage gas source mass spectrometer at Washington University in St Louis (WUSTL). Isotopic measurements were calibrated against NBS-19, NBS-20, and two in-house standards, with analytical errors of <0.1‰ (1σ) for δ13C carb and <0.2‰ (1σ) for δ18O carb.

Organic carbon isotopes were measured by combusting tin cups containing acid-insoluble residue in a Costech ECS 4010 Elemental Analyzer at 1000 °C. The mass of insoluble residue combusted was varied for each sample to give a constant peak size for CO2 for subsequent isotopic analysis on a Thermo Finnigan Delta V Plus mass spectrometer at WUSTL. Isotopic measurements were calibrated against NBS-21 graphite, IAEA-CH6 sucrose, and
in-house acetanilide standards. All samples were measured in duplicate with an average reproducibility of <0.25‰ (1σ) and are reported in delta notation relative to the VPDB scale.

Isotopic analysis of the resulting sulfate and sulfide phases was performed using a Costech ECS 4010 elemental analyzer coupled to a Thermo Finnigan Delta V Plus mass spectrometer at WUSTL. For each analysis, approximately 100 μg of S was loaded into a tin capsule and combusted at 1000 °C. Sulfate sample combustion was catalyzed by the addition of ~2 mg of vanadium pentoxide to the sample capsules. The evolved SO_2 gas was introduced to the mass spectrometer in a continuous flow mode. Sulfur isotope composition was calibrated against NBS-127, IAEA-S1, and IAEA148. Sulfur isotope values are reported in permil (‰) relative to the V-CDT (Vienna Canyon Diablo Troilite) scale. Based on replicate analyses across several days, reproducibility of sulfur isotope measurements was <0.3‰ (1σ).

A subset of 82 carbonate samples were selected for minor element analyses (Mg, Fe, Sr and Mn) from sections G1, G4, G5, G6 and G7 (refer to SOM; Fig. S2). Approximately 5 mg of each sample were placed in a 15 milliliter (mL) Falcon centrifuge tube along with 5 mL of a buffered solution of anhydrous acetic acid and ammonium hydroxide (pH of 5) and allowed to react in a sonicator for 5 h. This style of dissolution is effective in dissolving carbonate phases (both limestone and dolomite), but does not leach less soluble sediment components, such as Fe–Mn oxides and clays (Tessier et al., 1979; Husson et al., 2015). The elements liberated during dissolution are assumed to be carbonate-bound. Each solution was then centrifuged at 2500 rpm for ten minutes. The upper 4 mL of supernatant, clear of any insoluble residue, was pipetted off into another Falcon tube. Elemental abundances of Mg, Sr, Fe and Mn were measured on a PerkinElmer Optima 7300DV inductively coupled plasma optical emission spectrometer (ICP-OES) at WUSTL.

4. RESULTS

Isotopic data were obtained from 11 sections on Gotland (Fig. 2), spanning strata from the Lower Visby Fm through the Upper Visby, Höglkint, and Tofta Fms, and into the Hangvar Fm, as well as strata from the overlying Slite Group (Fig. 3). Where present, sections were aligned at the contact between the Lower and Upper Visby Fms. Other sections were aligned based on their stratigraphic occurrence and the presence of the Ireviken δ¹³C excursion (Fig. 4). Geochemical results from Slite Group strata were tied into the other sections using the isotope ratio data of Cramer et al. (2012).

4.1. δ¹³C_carb/δ¹⁸O_carb

Beginning a few meters below the Lower Visby–Upper Visby contact, there is a 4.5‰ increase in δ¹³C_carb (from ~1‰ to ~5.5‰) through the Upper Visby Fm spanning ~14 m of stratigraphy (Fig. 4). This increase in δ¹³C_carb is associated with an increase in the abundance of carbonate from 80% to 100% (Fig. 5 and Fig. S3 in SOM). Throughout the overlying Höglkint, Tofta, and lowermost Hangvar Fms, δ¹³C_carb values remain at this +5.5‰ plateau with a slight trend down to values of 5‰ in the Hangvar Fm (Fig. 4). Following a sampling gap, δ¹³C_carb returns to a relatively invariant value of ~−1‰ in the overlying Slite Group strata. The basal Slite strata may record the tail of the Ireviken δ¹³C_carb excursion, although additional sampling of intervening strata is needed to ascertain this. For the most part, δ¹⁸O_carb values cluster tightly around ~−5.2‰ with only a few points more ¹⁸O-depleted (to −6 or −7‰). We observed no evidence of the positive excursion in δ¹⁸O_carb (Fig. 4) observed by Munnecke et al. (2003), likely reflecting more variable inputs and greater diagenetic alteration of oxygen isotope ratios in the carbonate matrix compared to the brachiopod shells studied by Munnecke et al. (2003). In the overlying Slite Group strata, δ¹⁸O values are invariant at ~−5.5‰ and no obvious offset was observed relative to the underlying strata.

4.2. δ¹³C_org

As is often the case, the δ¹³C_org data show higher stratigraphic variability relative to that seen in co-occurring δ¹³C_carb. Despite this characteristic scatter, there is a ~5‰ positive shift in δ¹³C_org, which appears to slightly lag the δ¹³C_carb excursion, rising from ~−28‰ in the Lower Visby Fm to ~−23‰ in the Tofta Fm (Fig. 4). Similar to the δ¹³C_carb record, the observed increase in δ¹³C_org is associated with a change in the abundance of the phase: here, total organic carbon (TOC) decreases associated with the increase in δ¹³C_org values (Fig. 5 and SOM). Samples from the upper portion of section G4 (Upper Visby – Höglkint Fms) are ~1–2‰ lower in δ¹³C_org than expected relative to both the offset from coeval δ¹³C_carb values and the δ¹³C_org record from other sections (Fig. 4), suggesting local ecological controls on the δ¹³C_org signal. The onset of the increase in δ¹³C_org is coincident with a shallowing upward transition from interbedded fossiliferous micrite and grainstones to biohermal facies. Throughout the overlying Höglkint, Tofta, and lowermost Hangvar Fms, δ¹³C_org values remain elevated between ~26‰ and ~23‰ (Fig. 4). In the overlying Slite Group strata, δ¹³C_org compositions returned to a relatively invariant value of ~−30‰ that tracks the δ¹³C_carb signal.

4.3. δ³⁴S_CAS

The δ³⁴S_CAS data are characterized by ~5‰ variability throughout the sampled interval (Fig. 4). Superimposed on this scatter, δ³⁴S_CAS increases smoothly from ~30‰ in the Lower Visby Fm to ~37‰ at the top of the Upper Visby Fm (Fig. 4). This increase in δ³⁴S_CAS values with stratigraphic height is associated with a decrease in the abundance of CAS in these samples (Fig. 5 and SOM). The δ³⁴S_CAS values remain at ~37‰ through the Höglkint and Tofta Fms and into basal Hangvar strata (Fig. 4). The overlying Slite Group strata have δ³⁴S_CAS values between 25‰ and 34‰ with no clear stratigraphic trend and an average of 32‰ ± 2‰ (n = 20).
4.4. \[^{34}\text{Spyr}\]

In the strata of the Lower and Upper Visby Fms, \[^{34}\text{Spyr}\] values are relatively invariant at \(^{15}\text{‰}\) with scatter of \(^{10}\text{‰}\) at any given stratigraphic level (Fig. 4). The \[^{34}\text{Spyr}\] values increase in the Upper Visby Fm, tracking the increase in \[^{34}\text{SCAS}\]. There is an abrupt 25\(^{‰}\) increase in \[^{34}\text{Spyr}\] values to \(^{15}\text{‰}\) that occurs at the transition into the bioherms of the basal Höglint Fm (Figs. 4 and 6). This shift is associated with a dramatic increase in \[^{34}\text{Spyr}\] variability with a range of values up to \(^{70}\text{‰}\) across the Tofta-Hangvar Fm transition (Fig. 4). The \[^{34}\text{Spyr}\] data are characterized by high stratigraphic variability relative to that in \[^{34}\text{SCAS}\] in the Lower Visby Fm through Tofta Fm strata. The trend to higher and more variable \[^{34}\text{Spyr}\] values is also associated with a decrease in the abundance of pyrite in these samples (Fig. 5 and SOM). In the overlying Slite Group, \[^{34}\text{Spyr}\] decreases to \(^{-20}\text{‰}\) and is characterized by minimal variance (\(\sigma = 1.4\text{%}\)) as compared to both its behavior lower in the section and to that of the co-occurring Slite Group \[^{34}\text{SCAS}\] data (Fig. 4).

4.5. Minor elements

The Sr concentration shows limited variability throughout the stratigraphy associated with the Ireviken event but there are stratigraphic shifts in the Mg, Fe and Mn concentrations (Fig. S2). Mg displays the largest degree of variability with concentrations increasing from 1502 ppm in the Lower Visby Fm to 5074 ppm at the contact with the Upper Visby Fm. Similarly, there is a sharp rise in Fe concentration from 184 ppm to 1479 ppm and a slight shift in Mn concentration from 266 ppm to 362 ppm, both occurring just below the contact between the Lower and Upper Visby Formation. This sedimentological contact is a maximum flooding surface just prior to onset of the \[^{13}\text{C carb}\] anomaly (Fig. 4).

5. DISCUSSION

5.1. Carbon cycling

The positive excursions in both \[^{13}\text{C carb}\] and \[^{13}\text{C org}\] are of similar magnitude (\(\sim 4.5-5\text{%}\)) with the shift in \[^{13}\text{C carb}\] beginning \(\sim 2\) m below the Lower Visby-Upper Visby contact and the \[^{13}\text{C org}\] excursion rising more gradually with a slight \(\sim 10\) m lag behind \[^{13}\text{C carb}\]. The shift in \[^{13}\text{C carb}\] is also coincident with the onset of increased Fe abundance and aligns with some of the main extinction pulses (datums 3 and 5) of the Ireviken Event, occurring just before and at the boundary separating the Lower and Upper Visby beds. In contrast, the \[^{13}\text{C carb}\] and \[^{13}\text{C org}\] records in the overly-
ing Slite Group are stratigraphically invariant and are characterized by values $\sim 2\%e$ lower than their pre-Ireviken baselines.

Parallel time-series behavior in both $\delta^{13}C_{\text{carb}}$ and $\delta^{13}C_{\text{org}}$ data suggests a perturbation to the isotopic composition of the ambient dissolved inorganic carbon (DIC) reservoir during the Ireviken Event, directly impacting $\delta^{13}C_{\text{carb}}$ and in turn being incorporated into the $\delta^{13}C_{\text{org}}$ signature through relatively invariant (albeit local) biological fractionation (gray line in Fig. 4b). During the Ireviken event, there is little change in the apparent biological fractionation ($\varepsilon \sim \delta^{13}C_{\text{carb}} - \delta^{13}C_{\text{org}}$), with the exception of a $\sim 2\%e$ decrease in the bioherm strata marking the Upper Visby-Högklint transition in section G4 (Fig. 4). In contrast, during the Hirnantian excursion, there is a sustained change in ε in some sections (Young et al., 2010), although not in all (Jones et al., 2011), and evidence for changing microbial community composition (Rohrsen et al., 2013). The increased stratigraphic scatter in $\delta^{13}C_{\text{org}}$ values relative to the $\delta^{13}C_{\text{carb}}$ values in the same strata may simply reflect inherent variability in the isotopic fractionations associated with different carbon fixation pathways, variation in growth rates and growth conditions, and amounts of subsequent heterotrophic reworking (Laws et al., 1995; Hayes, 2001).

If the estimated duration of the Ireviken Event is correct (ca. 1 Myr), then the trends observed in the C isotopic data (i.e., the prolonged plateau at $+5.5\%e$) are inconsistent with a transient perturbation to the carbon cycle, but rather suggest (near) equilibration to a new steady state characterized by values lower than their pre-Ireviken baselines. Alternatively, assuming a constant $\delta^{13}C_{\text{in}}$ of $\sim -5\%e$ (Kump & Arthur, 1999), the observed $\delta^{13}C$ signals could arise from a sustained increase in f_{org} from ~ 0.21 to ~ 0.38 during deposition of the Upper Visby through Hangvar Fms, followed by a decrease in f_{org} (~ 0.14) in the Slite Group. Alternatively, assuming $f_{\text{org}} = 0.25$ (average for this time from Hayes et al. (1999)), the observed $\delta^{13}C$ signals could arise from a sustained increase in $\delta^{13}C_{\text{in}}$ from $\sim -5\%e$ to $\sim 0\%e$ during deposition of the Upper Visby through Hangvar Fms, followed by a return to lower $\delta^{13}C_{\text{in}}$ values ($\sim 7\%e$) during deposition of the Slite Group. In this scenario, $\delta^{13}C_{\text{in}}$ would be expected to (broadly) track sea-level, with increased values possibly indicating enhanced carbonate weathering associated with lowstand and exposure of carbonate-rich basins (Kump et al., 1999). It is also possible that both f_{org} and $\delta^{13}C_{\text{in}}$ varied during this interval, which would require smaller changes in either parameter individually (every 1\% change in $\delta^{13}C_{\text{in}}$ having the same impact as a change of 0.04 in f_{org}).
An alternative interpretation of these δ¹³C data is that they are influenced by local and/or regional environmental conditions and not necessarily record a simple time-series history of the global carbon cycle during this event. As a modern example, the Clino and Undo cores in the Bahamas are our best analogue for shallow water carbon isotope gradients (Swart & Eberli, 2005). The δ¹³C_carb patterns in the marginal platform deposits are produced through the admixture of aragonite-rich sediments, which have relatively positive δ¹³C_carb values, with pelagic materials, which have lower δ¹³C_carb values (Swart & Eberli, 2005). As the more isotopically positive shallow-water carbonate sediments are only produced when the platforms are flooded, there is a connection between changes in global sea level and the δ¹³C_carb of sediments in marginal settings. These data indicate that globally synchronous changes in δ¹³C_carb can take place that are completely unrelated to, or caused by, variations in the global average burial of organic carbon. Thus, the δ¹³C_carb values of the periplatform sediments in the Bahamas are largely unrelated to synchronous changes in the δ¹³C_carb of the open-oceans observed over the same time period.

Two observations support the interpretation that the carbon data are influenced by local and/or regional environmental conditions. First, the onset (and termination) of the δ¹³C excursion is associated with known changes in local depositional facies. Specifically, increased δ¹³C_carb values are associated with the transition to shallow-water facies. Secondly, there is a strong correlation between the abundance of carbonate in a given sample and the measured δ¹³C_carb signal. Specifically, the deeper water marls are ~80% carbonate and have lower δ¹³C_carb values; whereas the shallower water facies, consisting of 95–100% carbonate are associated with the +5.5‰ δ¹³C_carb plateau. The change in percent carbonate and depositional facies are best interpreted as local phenomena. Although it is possible to have global changes controlling these parameters (e.g., associated with eustatic sea level change during a glaciation, such as during the Hirnantian) (Opdyke & Walker, 1992; Swart & Eberli, 2005; Swart, 2008), the correlation of the δ¹³C excursion with these local facies changes requires us to consider that the driving factor in the Ireviken δ¹³C excursion could be a local and/or regional phenomenon. For example, the observed data could be explained by progressive changes in local DIC during the shallowing upward sequence as the relative position of sediment deposition changes with respect to the δ¹³C DIC gradient arising from the biological pump (de La Rocha, 2003). Furthermore, the co-eval variability in Fe and Mn with Mg concentrations is broadly associated with the maximum flooding surface and the increased presence of micrite towards the Lower – Upper Visby Fm contact (Fig. S2). Micrite is expected to be less pristine than the brachiopod fragments or other fauna within the samples because it has high surface areas, far more commonly recrystallizes during burial, and often includes several generations of cements. Thus, this minor element variability might be associated with the facies transition from the progressively argillaceous beds and the flooding surface, as well as subsequent shallowing of the chemocline. To evaluate the relative support for these two distinctly different scenarios (global vs. local changes driving the δ¹³C records), we turn to other proxy data.

5.2. Oxygen isotopes and climate

The δ¹⁸O_carb record from well-preserved marine carbonate samples is sensitive to climate changes that could impact (i) ice-volume by changing seawater δ¹⁸O (Shackleton & Opdyke, 1973), and/or (ii) ambient temperatures by changing the isotopic fractionation between seawater and carbonates (Emilian & Edwards, 1953; Clayton, 1959). Local hydrologic changes, such as evaporation in partially restricted environments or influx of freshwater in estuarine settings, can additionally impact local δ¹⁸O_carb values and therefore δ¹³C_carb values. In addition, changes in the relative contributions of aragonitic vs. calcitic carbonate producers (Lécuyer et al., 2012) and/or kinetic/vital effects could also impact the resulting δ¹⁸O_carb values (Adkins et al., 2003). Previous reports have identified a +0.6‰ increase in δ¹⁸O_carb from well-preserved brachiopods spanning the Ireviken Event, a signal that has been interpreted to reflect changes in local hydrography of the basin during deposition (Bickert et al., 1997; Munnecke et al., 2003).

We observed no corresponding stratigraphically coherent change in δ¹⁸O_carb (Fig. 4), although our sampling was broad and unlike previous studies did not focus on well-preserved fossils. The absence of a δ¹⁸O_carb excursion from our data likely indicates that the samples have undergone variable diagenetic alteration to mask the δ¹⁸O_carb anomaly (without a corresponding impact on the δ¹³C_carb signature, which is rock-buffered and hence more robust (Cummins et al., 2014)). In addition to the above results, clumped isotope paleothermometry (Eiler, 2007) was applied to well-preserved brachiopods from the same sample suite presented here. Although dealing with limited samples, this work did not reveal evidence for a substantive change in either seawater δ¹⁸O or temperature that would be expected to drive a primary change in δ¹⁸O_carb during the Ireviken Event (Cummins et al., 2014). However, there is a record of increased δ¹⁸O enrichment found in condonites from many sections through the Ireviken (Trotter et al., 2016), which is similar in magnitude to the increase in δ¹⁸O_carb found previously (Bickert et al., 1997; Munnecke et al., 2003). These phosphate (δ¹⁸O_PoAs) records are thought to be more robust against diagenetic alteration than the records from carbonate phases (Wenzel & Joachimski, 1996) and may more accurately record primary changes in climate associated with either cooling and/or increase in ice volume during Ireviken time. Thus, while we saw no clear δ¹⁸O_carb evidence for cooling or glaciation in our data, the preponderance of results from other studies is consistent with the hypothesis that climate change was linked to the Ireviken Event and associated with the observed changes in carbon and sulfur isotopic records.

5.3. Sulfur cycling

Changes in both δ³⁴SCAS and δ³⁴S_pyrr values were observed in unison with the δ¹³C excursion. Unlike the
carbon isotope excursions, the magnitudes of the trends are fundamentally different between sulfate and sulfide: $\delta^{34}\text{SCAS}$ increases by 7‰, whereas the observed increase in $\delta^{34}\text{Spyr}$ is roughly four times as large (~30‰; Fig. 4). Stratigraphic variability (i.e., the range of $\delta^{34}\text{S}$ in each facies at any particular stratigraphic position) in $\delta^{34}\text{SCAS}$ is roughly constant (~5‰) throughout the stratigraphy. In contrast, variability of $\delta^{34}\text{Spyr}$ increases upsection from 7.4‰ (1σ) in the Lower/Upper Visby strata, to 8.5‰ (1σ) in the Hökölint Fm, to as high as 16.6‰ (1σ) in the Tofta-Hangvar strata, before ultimately decreasing to 1.4‰ (1σ) in the overlying Slite Group (Fig. 4).

Akin to the relationship between $\delta^{13}\text{C}_{\text{carb}}$ and $\delta^{13}\text{C}_{\text{org}}$, $\delta^{34}\text{Spyr}$ is expected to show larger scatter than $\delta^{34}\text{SCAS}$ because of variable isotopic fractionation during microbial sulfur cycling likely occurring in the sediment column during early diagenesis (Fry et al., 1988; Canfield & Teske, 1996; Habicht et al., 1998; Canfield, 2001b; Sim et al., 2011b; Fike et al., 2008; Fike et al., 2015). In contrast to $\delta^{13}\text{C}_{\text{org}}$ values, there can be additional variability in the $\delta^{34}\text{Spyr}$ signal associated with possible closed-system distillation for pyrites forming in the sediment under limited porewater exchange with the overlying water column (Gomes & Hurten, 2013). Thus, the apparent fractionation observed between $\delta^{34}\text{SCAS}$ and $\delta^{34}\text{Spyr}$ records can reflect both biological and sedimentological factors (Pasquier et al., 2017).

Variability in $\delta^{34}\text{SCAS}$ ($\sigma = 3.0$‰) is less than $\delta^{34}\text{Spyr}$ ($\sigma = 14.7$‰) variability in the lower portions of the stratigraphy (Lower Visby through Hangvar Fms), but much higher than $\delta^{34}\text{Spyr}$ variability in the Slite Group strata (Fig. 4). Slite Group strata have higher variability in $\delta^{34}\text{SCAS}$ ($\sigma = 2.1$‰) than in $\delta^{34}\text{Spyr}$ ($\sigma = 1.4$‰), which is unexpected from coeval sulfur phases and suggests (1) multiple, geochemically distinct carbonate phases (Present et al., 2015); (2) possible alteration of $\delta^{34}\text{SCAS}$ after deposition and/or during processing (Wotte et al., 2012); or (3) potential overprinting of $\delta^{34}\text{Spyr}$ values due to post-depositional migration of sulfur-bearing fluids. We observed no evidence of macroscopic sulfide phases such as pyrite within the Slite Group or clear indication of diagenetic fluid migration to support the last scenario (Fig. S1; refer to SOM). If primary, the stability of $\delta^{34}\text{Spyr}$ in Slite strata argues for similar stability in both the parent $\delta^{34}\text{SSoA}$ and in the apparent fractionation ε (arising from the combined effects of the actual biological metabolisms and any subsequent closed-system distillation). Consequently, we view the observed variation in $\delta^{34}\text{SCAS}$ as more likely the result of carbonate precipitation in porewaters that had become chemically distinct from overlying seawater (e.g., as the result of progressive sulfate reduction) or from interaction with later-stage fluids with a distinct sulfate composition (Marenco et al., 2008a, 2008b; Jones & Fike, 2013; Present et al., 2015). This interpretation is consistent with the nodular nature of these beds in many locations, evidence for discrete but variable precipitation of carbonate on the seafloor and within the sediment column. Additional variability in the $\delta^{34}\text{SCAS}$ data could arise from incomplete removal of secondary sulfates (Wotte et al., 2012) not truly bound into the carbonate mineral lattice, such as those derived from atmospheric deposition (Peng et al., 2014) or in-situ oxidation of sulfides over geologic time.

Standard isotope mass balance models of global sulfur cycling treat stratigraphic sulfur isotope variation in terms of three parameters (Canfield, 2004; Fike & Grotzinger, 2008): (1) the isotopic composition of sulfate entering the oceans ($\delta^{34}\text{Sin}$); (2) the relative burial of pyrite sulfur compared to total sulfur burial (f_{pyr}); and (3) the expressed isotopic fractionation between sulfate and hydrogen sulfide, which is approximately by the isotopic offset between sulfate and pyrite in ancient strata: ε_{pyr}. At steady state:

$$\delta^{34}\text{SCAS} = \delta^{34}\text{Sin} + f_{\text{pyr}} \times \varepsilon_{\text{pyr}}$$

(2)

The first-order increases in both $\delta^{34}\text{SCAS}$ and $\delta^{34}\text{Spyr}$ values across the Ireviken Event naturally suggest the hypothesis that both reflect a remarkably rapid change to the isotopic composition of the local sulfate reservoir. This sulfate reservoir is the source of sulfur incorporated into carbonates as $\delta^{34}\text{SCAS}$ and into pyrites following microbial sulfate reduction to hydrogen sulfide and subsequent reaction with iron (Berner, 1984). All else being equal, a change in the isotopic composition of the marine sulfate reservoir ($\delta^{34}\text{SSoA}$) would be inherited by pyrites formed from this parent sulfate. Thus, we can divide the observed $\delta^{34}\text{S}$ response into two components: (1) a $+7$‰ positive excursion in both sulfate and pyrite $\delta^{34}\text{S}$; and (2) an additional factor driving the further ~23‰ increase in mean $\delta^{34}\text{Spyr}$ and associated increase in $\delta^{34}\text{Spyr}$ variability.

If these S isotopic data reflect changes in the global sulfur cycle, the parallel increase in $\delta^{34}\text{SCAS}$ and $\delta^{34}\text{Spyr}$ can be explained by either changes in f_{pyr} or $\delta^{34}\text{Sin}$ [Eq. (2)]. Isotopic mass-balance arguments (Canfield, 2004; Fike & Grotzinger, 2008) require early Paleozoic $\delta^{34}\text{Sin}$ to be significantly more enriched than bulk Earth (0‰) or estimates of average modern marine inputs (~3‰) (Canfield, 2004; Burke et al., 2015). However, no firm estimates exist for $\delta^{34}\text{Sin}$ during Silurian time. As such, we can only discuss relative changes in both $\delta^{34}\text{Sin}$ and f_{pyr}. The generation of a 7‰ parallel increase in sulfate and pyrite $\delta^{34}\text{S}$ could be accomplished by a 7‰ increase in $\delta^{34}\text{Sin}$ or an increase in f_{pyr} of ~0.23 (assuming an average ε_{pyr} of 30‰ (Wu et al., 2010)). It is also possible that both f_{pyr} and $\delta^{34}\text{Sin}$ varied during this interval, which would require correspondingly smaller changes in either parameter individually (every 3‰ change in $\delta^{34}\text{Sin}$ having the same impact as a 0.1 change in f_{pyr}).

An alternative view of the $\delta^{34}\text{SCAS}$ data is that they reflect changes that occurred in a local sulfate pool, rather than the global marine sulfate reservoir. This interpretation is supported by three observations. First, the onset (and termination) of the excursion is associated with changes in local depositional facies; $\delta^{34}\text{SCAS}$ values increase during the transition to shallow water facies. Second, there is an inverse correlation between CAS abundance (ppm) and the measured $\delta^{34}\text{SCAS}$ values (Fig. 5; SOM). This relationship is consistent with partial closed-system distillation of the reservoir in the shallower, more restricted facies, resulting in decreased sulfate abundance and increased $\delta^{34}\text{SSoA}$. While this scenario could apply to the entire ocean rather than the local sulfate pool, the short duration of this event

(~1 million years) suggests that such a large change in marine sulfate concentrations is unlikely. Such a change would also be unlikely to happen in lockstep with local facies changes. Third, the upper strata of the Slite Group locally record pseudomorphs after gypsum atop patch reefs, thought to have been precipitated during a transient regression (Faerber & Munnecke, 2014). This observation requires that marine sulfate levels were sufficiently high during this interval to ensure gypsum precipitation before halite saturation (e.g., ≈3 mM). These sulfate levels appear to be too high to readily accommodate an isotopic change of the observed magnitude in the global seawater sulfate reservoir over the duration of the Ireviken (Luo et al., 2010). The scatter of the $\delta^{34}S_{\text{CAS}}$ record (±5‰) is also larger than would be expected if it faithfully reflected the global seawater reservoir because the amount of time allowable is insufficient for the oceanic reservoir to change so substantially on such short time scales. What then might explain this variation in $\delta^{34}S_{\text{CAS}}$?

One possibility is late diageneric alteration. However, the excellent preservation of these strata and general absence of evidence for significant diageneric alteration (Jeppsson, 1983; Wenzel et al., 2000; Calner et al., 2004a; Cummins et al., 2014), suggests that a wholesale overprinting of the $\delta^{34}S_{\text{CAS}}$ record is unlikely. In these strata, carbonates generally formed in the water column or at or near the sediment-water interface, and can reasonably be inferred to reflect ambient seawater and shallow porewater chemistry at the time of deposition, modified by early diageneric cements associated with lithification. The addition of late phase carbonate cements (including those associated with meteoric and/or basinal diageneis), with their own sulfate concentrations and respective isotopic compositions, could variably overprint the original seawater signature, shifting values and/or increasing scatter in the $\delta^{34}S_{\text{CAS}}$ record. Such variability was observed in the Hirnantian-aged strata from Anticosti Island, both in bulk-rock values (Jones & Fike, 2013) and when sampled at the mm-scale (Present et al., 2015). The increased stratigraphic variation in $\delta^{34}S_{\text{CAS}}$ values relative to $\delta^{34}S_{\text{pyr}}$ values in the Slite Group strata does suggest a modest degree (±3‰) of local alteration to the $\delta^{34}S_{\text{CAS}}$ record, at least in this interval (Fig. 4). More explicitly, if the relatively invariant $\delta^{34}S_{\text{pyr}}$ signal is primary, it requires that the alteration to the $\delta^{34}S_{\text{CAS}}$ values happen after in-situ pyrite formation (i.e., the $\delta^{34}S_{\text{CAS}}$ variability cannot reflect perturbations to the local water column $\delta^{34}S_{\text{SOA}}$). These observations lead us to consider that the driving factor(s) in the Ireviken $\delta^{34}S_{\text{CAS}}$ excursion may be at least in part a local phenomenon.

Superimposed on this parallel 7‰ increase in $\delta^{34}S_{\text{CAS}}$ and $\delta^{34}S_{\text{pyr}}$, additional factors are needed to explain the further ~23‰ increase in $\delta^{34}S_{\text{pyr}}$ and concomitant substantial increase in $\delta^{34}S_{\text{pyr}}$ variability. Examining paired $\delta^{34}S_{\text{CAS}}$ and $\delta^{34}S_{\text{pyr}}$ data, it is clear that there are stratigraphically coherent changes in both the magnitude and variability of ϵ_{pyr} preserved. Specifically, in the Lower Visby Fm, ϵ_{pyr} is ~4‰ with moderate variability ($\sigma = 9.7$‰), decreasing to an average of ~20‰ with very large variability (from ~10 to ~55‰, $\sigma = 15.1$‰) in the Upper Visby through Hangvar Fms, and increasing to ϵ_{pyr} ~52‰ with minimal variability ($\sigma = 1.4$‰) in the overlying Slite Group. The differential magnitude of the increases in $\delta^{34}S_{\text{CAS}}$ and $\delta^{34}S_{\text{pyr}}$ during the Ireviken Event imply considerable changes in the expressed isotopic fractionation ($\epsilon_{\text{pyr}} = \delta^{34}S_{\text{CAS}}-\delta^{34}S_{\text{pyr}}$) during sulfur cycling at this time. The covariation with lithofacies hints toward explanations for the decrease in ϵ_{pyr} and associated increase its variability that invoke changes occurring in the depositional environment. Environmental changes can impact ϵ_{pyr} (Claypool, 2004; Gomes & Hurgen, 2013; Pasquier et al., 2017), particularly when the sites of sulfate incorporation (carbonate precipitation) and sulfide/pyrite formation are separated in space or time (Fike et al., 2015).

Even more so than fractionations associated with carbon fixation, isotopic fractionations during microbial sulfur cycling can be large and extremely variable (between 0‰ and 70‰), depending on a variety of ecological and environmental factors (Fry et al., 1988; Canfield & Teske, 1996; Habicht et al., 1998; Canfield, 2001b; Habicht et al., 2002; Claypool, 2004; Fike et al., 2009; Sim et al., 2011b; Leavitt et al., 2013). In terms of strictly biological causes, a change in the relative abundance/activity of various sulfur cycling metabolisms (e.g., sulfate reduction, sulfur disproportionation, sulfide oxidation), each with their own isotopic fractionations, can impact the net fractionation between sulfate and sulfide. Sulfate reduction is generally thought to have the largest impact on overall isotopic fractionation in marine systems. Fractionation during sulfate reduction is mediated primarily by variations in the cell-specific rates of sulfate reduction, driven by the types and availability of electron donors coupled to sulfate reduction (Sim et al., 2011a, 2011b; Leavitt et al., 2013). One scenario to explain the decreased ϵ_{pyr} values observed during the Ireviken Event (Fig. 4) would be as the result of increased sedimentary organic carbon loading that drove faster rates of sulfate reduction, for a given sediment flux. Alternatively, changes in sedimentation rate could impact the connectivity of pore waters to the overlying water column (Claypool, 2004; Pasquier et al., 2017). Increased sedimentation would isolate the local pore water sulfate reservoir, leading to increased pore water $\delta^{34}S_{\text{SOA}}$ through ongoing microbial sulfate reduction. Conversely, slower sedimentation rates and higher porosity would result in enhanced communication between pore water and seawater. In this relatively open system, the constant supply of seawater sulfate results in a stable, low value for pore water $\delta^{34}S_{\text{SOA}}$ (and therefore in the resulting $\delta^{34}S_{\text{pyr}}$) in these intervals. Decreased ϵ_{pyr} could also result from increased sulfide oxidation in shallower, more energetic environments, which could drive the residual sulfide pool to increased $\delta^{34}S_{\text{H2S}}$ values (Fry et al., 1988) and/or impact the availability of reactive iron that can react with H$_2$S to eventually form pyrite. Given the observed facies changes and decrease in TOC associated with the Ireviken Event in these samples, the latter options of changing sedimentation rates and/or more oxidizing conditions seem more likely than increased sulfate reduction rates and closed-system behavior resulting from enhanced organic carbon loading. Following reaction with iron, this enriched sulfide pool would create pyrites with elevated $\delta^{34}S_{\text{pyr}}$ (Fike et al., 2015), as observed (Fig. 4).
There is a strong case for a depositional influence of the \(\delta^{34}\text{Spyr} \) signature – over and above that acting on the (local) parent \(\delta^{34}\text{S}_{\text{SO}_4} \) reservoir. Specifically, a major increase in both average \(\delta^{34}\text{Spyr} \) and associated stratigraphic variability occurs abruptly at the Upper Visby-Högklint transition, coincident with the transition to shallow-water bioturbational facies (e.g., Fig. 6). This shallowing represents a shift to a shallower, more energetic depositional environment. In modern ocean sediments, such a transition can lead to increases in both the mean value and the stratigraphic variation of \(\delta^{34}\text{Spyr} \) (e.g., Aller et al., 2010; Gao et al., 2013). Storm-induced sedimentary reworking juxtaposes newly re-deposited oxic sediments with underlying sulfide sediments.

Oxidative reworking has three potential consequences. First, partial oxidation of ambient \(\text{H}_2\text{S} \) along the reworked contact can result in an increase in residual \(\delta^{34}\text{S}_{\text{H}_{2}\text{S}} \) (Fry et al., 1988). Secondly, higher rates of cell-specific sulfate reduction (associated with the sharp redox gradient) can result in the generation of new hydrogen sulfide with fractionation from its parent sulfate (Sim et al., 1988). Lastly, the presence of the oxidized layer encourages the partial isolation of the zone of net sulfate reduction at the base of the reworked layer from the overlying seawater boundary, leading to closed-system behavior with the generation of \(\delta^{34}\text{Spyr} \) (e.g., Aller et al., 2010; Wing & Halevy, 2014). Thirdly, the presence of the oxidized layer allows for the partial preservation of the stratigraphic variability in \(\delta^{34}\text{Spyr} \). A dependence of both mean \(\epsilon_{\text{spy}} \) and its variance on depositional environment is supported by the abrupt changes in these parameters at the Upper Visby-Högklint boundary, coincident with the transition to shallow water bioturbational facies representative of a more energetic depositional environment (Fig. 6). In addition, bioturbation and its potential impact on both biogeochemical cycling and the signals that get preserved in sediments is important. Whilst bioturbation is present within some of the sediments as marked by nodular bedding and vertical traces, the degrees of bioturbation within the Silurian are far lower than seen in Mesozoic or Cenozoic environments (Tarhan et al., 2015).

5.4. Global importance

Given the inferred environmental influence on the proxies examined here (\(\delta^{13}\text{C}_{\text{CARB}} \), \(\delta^{18}\text{O}_{\text{DIC}} \), \(\delta^{34}\text{S}_{\text{CAS}} \), and especially \(\delta^{34}\text{Spyr} \)), the stratigraphic records through the Ireviken Event observed here would not necessarily be expected to be globally reproducible, in contrast to the standard interpretation of these proxies, particularly \(\delta^{34}\text{C}_{\text{CARB}} \) and \(\delta^{34}\text{S}_{\text{CAS}} \), which are often thought to reflect global marine reservoirs. However, there are records from around the world demonstrating the presence of both the Ireviken Event extinction and the associated \(\delta^{13}\text{C} \) excursion (Table 1). How do we reconcile these? In examining the global records of Ireviken \(\delta^{13}\text{C} \) data, two patterns are clear: first, the magnitude of the excursion varies strongly from location to location (from \(\sim 2-5.5\% \)); and secondly, most of these instances are coincident with clearly recognized facies transitions (Table 1).

These observations could be reconciled if there were global processes that synchronously gave rise to local facies changes and variable biogeochemical changes in basins around the world. Based on the timing of the Ireviken Event, the most obvious candidate for a driving mechanism would be a pulse of cooling (possibly associated with glaciation) coincident with the Ireviken. This hypothesis is consistent with the \(\delta^{18}\text{O}_{\text{CARB}} \) (Bickert et al., 1997; Munnecke et al., 2003) and conodont phosphate (\(\delta^{18}\text{O}_{\text{PO}_{4}} \)) records (Trotter et al., 2016) and potentially the sedimentary record (Grahn & Caputo, 1992), although as discussed above no evidence for this was found using carbonate clumped isotopes on a subset of Gotland samples (Cummins et al., 2014). In this framework, cooling-induced seawater contraction and associated sea level drop (plus possible glacioeustatic sea-level change) could influence depositional settings across the globe, impacting in turn how local conditions filter the ways in which biogeochemical proxies get encoded in sediments. These interpretations are fundamentally in agreement with Jeppsson’s original model that invokes climatically driven changes in local hydrology to explain the Ireviken Event as a function of alternating humid/arid episodes (Jeppsson, 1990; Bickert et al., 1997; Jeppsson, 1997a; Munnecke et al., 2003). The results here add to the growing appreciation that chemostratigraphic isotopic records, particularly \(\delta^{34}\text{Spyr} \), can be impacted by both local and global processes. It is also important to note that despite occurrences where changes in local depositional settings around the world might be synchronous, the expressed isotopic excursions themselves might not be of global significance from an isotope mass-balance perspective. For example, local changes in deposition could result in extra organic matter burial in shallow environments throughout the world, resulting in a global increase in \(\delta^{13}\text{C}_{\text{CARB}} \) mediated through global \(\delta^{13}\text{C}_{\text{DIC}} \). However, if sea level changes create a number of Bahamas-like carbonate platforms, it is possible that an associated increase in local \(\delta^{13}\text{C}_{\text{CARB}} \) signatures in these sections would have no global significance from an isotope mass balance perspective (Swart & Eberli, 2005; Swart, 2008). If such environments of local \(^{13}\text{C} \)-enriched carbonate deposition are sufficiently widespread as to become a major global carbonate sink, they will perform induce a decrease in \(\delta^{13}\text{C} \) in the average surface ocean to maintain mass balance.

The recognition that chemostratigraphic isotopic records, particularly \(\delta^{34}\text{Spyr} \), can be impacted by both local and global processes demands consideration when making inferences about changes in global biogeochemical cycling based on local geochemical records, particularly when they change in sync with local depositional facies. Furthermore, many geochemical proxies record both global and local processes. Therefore, paired sedimentological and chemostratigraphic data are essential to tease these signals apart for accurate interpretation of proxy data in the rock record.
6. CONCLUSIONS

Carbonate rocks from the early Silurian (Sheinwoodian, ~431 Ma) contain a record of a substantial extinction of marine taxa known as the Ireviken Event. On Gotland, these rocks record positive excursions of approximately equal magnitude in both carbonate ($\delta^{13}C_{\text{carb}}$) and organic ($\delta^{13}C_{\text{org}}$) carbon, as well as a synchronous perturbation to the sulfur cycle manifest as an approximate 7‰ positive excursion in $\delta^{34}S_{\text{CAS}}$ and an approximate 30‰ positive excursion in $\delta^{34}S_{\text{pyr}}$. The additional increase in $\delta^{34}S_{\text{pyr}}$ values is accompanied by a concomitant increase in stratigraphic variability of $\delta^{34}S_{\text{pyr}}$ values, both of which are potentially attributable to a transition to shallower, higher-energy conditions (Aller et al., 2010; Pasquier et al., 2017). All of these proxy records show relationships between the abundance of a given phase and its isotopic composition—and these changes also co-occur with changes in lithofacies and paleoenvironmental conditions. However, the Ireviken Event (both the biotic turnover and the $\delta^{13}C$ excursion) appears in stratigraphic sections around the world, where the stratigraphic trends are also frequently associated with changing depositional facies, perhaps related to glacioeustatic sea-level changes. Because these chemostatigraphic isotopic records, particularly $\delta^{34}S_{\text{pyr}}$, can be impacted by both local and global processes, paired sedimentological and chemostatigraphic data are essential to tease these signatures apart and more accurately reconstruct biogeochemical cycling over Earth history. These observations require revisions in how we apply stable isotope proxies to reconstruct historical carbon and sulfur budgets. While this uncertainty may be discouraging to some, recognition of this complexity provides new geochemical opportunities to interrogate conditions of depositional facies and diagenetic regimes.

ACKNOWLEDGEMENTS

The authors thank Lee Kump, Matt Hurten and Noah Planavsky for reviewing and improving this manuscript. Field and stable isotope work was supported by an Agouron Institute grant to DAF and WWF as well as a Packard Fellowship and a Hanse-wissenschaftskolleg Fellowship awarded to DAF. J.G. Metzger assisted with field work. S. Moore and C. Beudoin helped with sample preparation and S. Moore, D. McCay and J. Richard assisted with stable isotope and minor element measurements at Washington University in St. Louis.

APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gca.2018.11.030.

REFERENCES

Cramer B. D., Loydell D. K., Samtleben C., Munnecke A., Kaljo D., Maennik P., Martina T., Jeppsson L., Kleffner M. A.,

Associate editor: James Farquhar